

ECHORD Opening Event

Deutsches Museum, Munich, Germany September 4, 2009

Robotics from fundamental research to market success

Machines that know what they do

Roland Siegwart Autonomous Systems Lab ETH Zurich

Outline

Introduction

- Challenges and Hurdles
- The Key Message

The R&D Challenges

Examples

- RoboX
- Inspection Robotics AIR
- Visual Mapping
- Container Robot
- KIWA Systems
- Technology Transfer through Spin-Off Companies
- Future Avenues
 - Most Promising Fields
 - What Society wants

Challenges and Hurdles

- Tow metrics for measurement of success
 - University research is measured by publications and impact factors
 - Industry is measured by market success
- Two kinds of key collaborators
 - Universities have the crazy people that thinking out of the box but lack experience
 - Industry experienced and highly specialized people with some blindness for new developments
 - -> "we already tried it 10 years ago, it did not work"
- Difference in working environment
 - University have a fast turnover of collaborators
 - -> Loss of knowledge, re-inventing the wheel
 - Industry has (should have) long-term collaborators
 - -> little incentives to take risks

Challenges and Hurdles

- Different Time scales
 - University: 10-30 years horizon
 - Industry -> 2-3 years to market
- Innovation is 10% inspiration and 90% transpiration
 - Universities prefer inspiration
 - -> but transpiration can also be very rewarding, because it will drive you to market success
 - Industry forgets about the inspiration because of continuous transpiration

Research and Industry Drifting Apart

Short term benefit

Long term investment in new technologies

Key Message

Keep it simple

- "One should keep things as simple as possible
 - but not simpler!" (A. Einstein)
- Robustness increases with simplicity
- Technology transfer
 - Transferring novel technologies is about "transferring" the enthusiastic people behind it
- Don't solve virtual problems
 - even if they are probably more rewarding according to university success metrics

The R&D Challenge

Seeing, Moving, Feeling, Understanding

"Seeing" the world – more than appearance Perception and models ("understanding") are strongly linked What is the difference in brightness?

http://web.mit.edu/persci/people/adelson/checkershadow_downloads.html

"Moving" - Intelligent Designs

- Passive locomotion concept
- 6 wheels
 - two boogies on each side
 - one fixed wheel in the rear
 - one front wheel with spring suspension
- Iength: 60 cm
- height: 20 cm
- Characteristics
 - highly stable in rough terrain
 - overcomes obstacles up to 2 times its wheel diameter

"Feeling" the world

Tactility, key for controlling the real world

Courtesy of Albu-Schaeffer & Hirzinger, DLR, Germany

It takes us around 14 years to learn holding a glass with an optimal force

The way forward

- Perceive and understand the environment
 - Robots that know what they do
- Design of robot systems
 - Robots that are best adapted to the task and their environment

nous Systems Lab

E PO.02

Large Installation of Autonomous Tour-Guide Robots

 Facts and Figures (May 15 – October 20, 2002)

- Fully autonomous navigation and interaction in human cluttered environment
- 11 robots
- 12 hours per day
- 159 days of operation
- Operational time: 13,313 hours
- Number of visitors: 686,000
- Total travel distance: 3,315 km
- navigation reliability nearly 100%

Robot Design

- Functional Design
- Humanoid appearance only if it is necessary for the functionality

On-board computer Batteries

Bumpers

Zürich

Autonomous Systems Lab

847 enters left

11 RoboX @ expo.02

56 s

Implementation

- 1997-2000
 - Basic research in navigation
- > 2000
 - First Prototype developed by EPFL
- 2001
 - Creation of BlueBotics
- > 2002 Implementation at expo.02
- > 2009
 - BlueBotics has around 10 collaborators

Inspection Robots

- Inspections of Power Plants are very costly:
 - down-time represents losses of millions per day
- Robotics technology impotently reduces down time:
 - Preventive Maintenance
 - Access without disassembly

Implementation

2005:

- Precursor pre-study (mandate of ALSTOM)
- 2006 (fall):
 - ALSTOM Inspection Robotics (AIR) founded by ALSTOM and ETHZ;
 - today around 10 people
- > 2007:
 - $_{\circ}~$ Start of CTI project, now \sim 12 people involved
- 2008-09:
 - New ad-hoc mandates (camera com.)
- > 2008 (fall):
 - CTI-extension to "multi robot"; additional funding from ALSTOM; collaboration with MIT
- > 2010:
 - EU Project on "flying inspector" ?

i Í Autonomous Driving

- Numb. of iterations = 1
- The most efficient algorithm for removing outliers
- Runs to 800 fps!

[Scaramuzza, ICRA'09] [Scaramuzza, ICCV'09]

Visual Odometry

Davide Scaramuzza

F

- The video shows a 3 Km path recovered using only point features and the car speed for the scale
- In the real case the algorithm works even faster than this video (without feature extraction) thanks to the usage of vehicle motion model

ETH-ASL, EUROPA Kick-off, 23.03.2009

State of the Art - Visual Odometry

Davide Scaramuzza

3D Models built from Point Clouds and Images

Lowenstrasse, Zurich

■ Í 3D Models built from Point Clouds and Images

Implementation

In preparation

Technology to be used in various R&D projects

Supply Chain Distribution: Big Business & Big Problem

www.KivaSystems.com

- 1. Order received.
- 2. Somehow the correct items are located and picked. Extremes:
 - a) Workers move to locate and pick items.
 - b) Fixed structure automation: sorters, conveyers, carousels:

3. Order is delivered.

Courtesy of Raff D'Andrea, ETH & KIVA Systems

KIVA Robots at Work

www.KivaSystems.com

Excerpt from History Channel, 2008

KIVA Robots System

www.KivaSystems.com

- Design Philosophies
 - shift complexity from hardware to software: cost & flexibility
 - hierarchical, modular system: isolate complexity & verifiability
 - communication failures degrade performance, but not stability
 - robustness for safe operation, adaptation for performance

- Key enabling technologies
 - Inexpensive sensors
 - Inexpensive computation
 - Inexpensive wireless communication
 - Take advantage of all these technologies

KIVA Systems: Implementation

www.KivaSystems.com

- KIVA Systems Facts and Figures
 - 2003
 - Founded
 - 2005:
 - Revenue \$ 0.2 million
 - 2008:
 - Revenue \$ 21.4 million
 - 120 Empoyees
 - Today:

- Around 10 installations with up to 1000 robots
- http://www.inc.com/inc5000/2009/companyprofile.html?id=200900060

AutoStrad[®]: Autonomous Containers Handling

www.patrick.com.au/ ; www.acfr.usyd.edu.au/

- Container Handling
 - Simplest outdoor field robotics application
 - Structured environments, well defined tasks
- General Requirements
 - Productivity equal to manned vehicles
 - Safe, efficient port interface
 - Non-increasing maintenance skills and costs
 - Flexible and incremental deployment

Courtesy of Hugh Durrant-Whyte, University of Sidney

AutoStrad Platform

www.patrick.com.au/ ; www.acfr.usyd.edu.au/

- Comparable to manned straddle
- Proven 24/365 fully autonomous operation
- Specification:
 - 65 tonnes
 - 10m high
 - 3.5m wide
 - 9m long
 - Loads to 50 tonnes
 - Speed to 30kmph
- Diesel-electric drive
- Hydraulic steer and hoist

Technical Innovations

www.patrick.com.au/ ; www.acfr.usyd.edu.au/

- Earlier work on FRAIT vehicle drove four technical innovations:
 - 1. High integrity navigation system design
 - 2. Mm-wave radar navigation technology
 - 3. Large vehicle modelling
 - 4. Safety system design

AutoStrad Platform

www.patrick.com.au/ ; www.acfr.usyd.edu.au/

- AutoStrad is the most advanced large-scale autonomous vehicle in commercial application
- Product success due to:
 - Four key technical innovations for autonomous systems
 - Strong collaboration between end users, equipment suppliers and technology developers
 - Staged development based on sound systems engineering principles

AutoStrad Implementation

- 1997 2003
 - Development by ACFR, University of Sidney
- > 2005
 - Proven successful commercial operation starting
- > 2009
 - Around 50 robots in operation
- Market Size
 - 150 units in Australia **Technology & Systems**
 - 1,200 units world-wide

Technology Transfer

- University Spin-Offs create around 10-15 jobs each - but over a longer time-span
- Other spin-offs create only around 2-4 jobs

41

Spin-Offs: Equity raised

- Funding Gap at Seed/Start-up stage
 - 74% of Seed/Start-up equity is contributed by founders/FF
 - First Angel/VC round on average 2 years after start-up

Oportunities and Markets

Opportunities / Markets

- Entertainment
- Industrial Transportation
- Cleaning
- Medical robotics
- Office logistics

The coffee servant Nesspresso / Bluebotics, Switzerland

- Construction, mining
- Farming
- Rescuing, fire fighting, surveillance
- Industrial services

Health and elderly care Services in private and public places

Service Robot ETH President greeting ASIMOV, Honda Inc.

What people really

	Sample	e Characteristic:	Ν	=
--	--------	-------------------	---	---

51%

49%

15%

31%

43%

6%

- Gender
 - Male
 - Female
- Age
 - 10-20
 - 20-40
 - 40-65
 - 65+
- Education Level
 - No education 3%
 - In education 11%
 - Apprenticeship degree 13%
 - Vocational school degree29^e
 - University degree 35%
 - Other 9%

🔳 I would like it a lot 🔳 I would not like at all

Entry Point: Elderly Care

- Human Washing Machine from Sanyo
 - \$ 50'000

 Several elderly women say they enjoy their robotic baths because of the privacy it offers over in-house nursing.

Take Home Message

- Keep it simple
- Go for scientific excellent
- Don't solve virtual problems
- Be patient, go for the fields where you see a clear opportunity
- Technology transfer equals people transfer
- Market success is very rewarding, also for academics

Take Home Message

- Innovation needs outstanding engineers that are ready to go the hard, but rewarding way up to the market
- The transfer of new technology from the lab to the market needs "seed funding" that is easily accessible

R. Löffler